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Importance: Polycyclic aromatic hydrocarbons are common carcinogenic and neurotoxic urban air pollutants.
Toxic exposures, including air pollution, are disproportionately high in communities of color and frequently
co-occur with chronic economic deprivation.
Objectives:Weexaminedwhether the association between child IQ and prenatal exposure to polycyclic aromatic
hydrocarbons differed between groups of children whose mothers reported high vs. low material hardship
during their pregnancy and through child age 5. We tested statistical interactions between hardships and
polycyclic aromatic hydrocarbons, as measured by DNA adducts in cord blood, to determine whether material
hardship exacerbated the association between adducts and IQ scores.
Design: Prospective cohort. Participants were recruited from 1998 to 2006 and followed from gestation through
age 7 years.
Setting: Urban community (New York City)

Participants: A community-based sample of 276 minority urban youth
Exposure measure: Polycyclic aromatic hydrocarbon–DNA adducts in cord blood as an individual biomarker of
prenatal polycyclic aromatic hydrocarbon exposure. Maternal material hardship self-reported prenatally and at
multiple timepoints through early childhood.
Main outcome measure: Child IQ at 7 years assessed using the Wechsler Intelligence Scale for Children.
Results: Significant inverse effects of high cord PAH–DNA adducts on full scale IQ, perceptual reasoning and
workingmemory scores were observed in the groups whose mothers reported a high level of material hardship
during pregnancy or recurring high hardship into the child's early years, and not in those without reported high
hardship. Significant interactions were observed between high cord adducts and prenatal hardship on working
memory scores (β = −8.07, 95% CI (−14.48,−1.66)) and between high cord adducts and recurrent material
hardship (β = −9.82, 95% CI (−16.22, −3.42)).
Conclusion: The findings add to other evidence that socioeconomic disadvantage can increase the adverse effects
of toxic physical “stressors” like air pollutants. Observed associations between high cord adducts and reduced IQ
were significant only among the group of childrenwhosemothers reported highmaterial hardship. These results
indicate the need for a multifaceted approach to prevention.
© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Exposure to polycyclic aromatic hydrocarbons (PAH) is prevalent in
urban populations as a result of incomplete combustion of fossil fuels
and other organic material. Specific sources of PAH include combustion
ealth, Columbia University, 722
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of diesel, gasoline, coal, residential heating oil, tobacco smoke, and
chargrilled or broiled foods (Bostrom et al., 2002; Larsen and Baker,
2003). There is growing evidence that exposures to ambient and indoor
air pollutants have adverse effects on neurodevelopment and that such
toxic exposures are disproportionately high in lower income communi-
ties of color (Jerrett, 2009; Mohai et al., 2009; Morello-Frosch et al.,
2011; Woodruff et al., 2003). These minority populations are also
more likely to experiencematerial hardship, an indicator of chronic eco-
nomic stress, to live in lower quality housing, and to have inadequate
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educational and nutritional resources compared to higher income
communities. Such socioeconomic stressors potentially compound or
increase the effect of toxic environmental exposures (Darmon and
Drewnowski, 2008; Evans and Kantrowitz, 2002).

In addition to exerting epigenetic effects (Herbstman et al., 2012),
PAH bind covalently to DNA to form adducts, a widely used biomarker
that reflects inter-individual variation in exposure, absorption,metabol-
ic activation, and DNA repair, thereby providing an individual biologic
dosimeter of an individual's exposure to PAH. PAH–DNA adducts have
previously associated with cancer in adults (Rybicki et al., 2004; Tang
et al., 1995, 2002) and with adverse neurodevelopmental outcomes in
children (Perera et al., 2008, 2011, 2012, 2014).

The fetus is considered particularly susceptible to the effects of PAH
exposure due to slower clearance of chemicals, underdeveloped detox-
ification and repair mechanisms, high rate of metabolic activity, and
rapid growth during fetal development (Grandjean and Landrigan,
2006; Perera et al., 2004). PAH are readily transferred across the placen-
ta and the fetal blood brain barrier (reviewed in Brown et al., 2007;
Hood et al., 2000).

Here we tested the hypothesis that the adverse effect of prenatal
exposure to PAH, measured by PAH–DNA adducts in cord blood,
would be greater among children whose mothers experiencedmaterial
hardship during pregnancy and in the children's early years compared
to children whose mothers did not experience material hardship.
Material hardship is a measure used to assess an individual's unmet
basic needs in the areas of food, housing, and clothing (Mayer and
Jencks, 1989). As has been shown with lead (Bellinger, 2000), even in
the absence of significant main effects, combined exposures to environ-
mental toxicants and social stress can have significant impacts on
neurodevelopment and therefore are of concern (Bellinger et al., 1987,
1989; Lansdown et al., 1986). We focused on prenatal PAH exposure
because of the extensive structural and cellular-level changes that
occur during the prenatal period and prior studies that have suggested
that prenatal exposure to PAH adversely affects cognitive development
(Edwards et al., 2010; Perera et al., 2009). We evaluated both prenatal
material hardship and that experienced continuously from pregnancy
through childhood because prior studies have reported adverse effects
of economic disadvantage and stress experienced during both develop-
mental periods (Bolton et al., 2013; Schoon et al., 2012).

2. Methods

2.1. The Columbia Center for Children's Environmental Health (CCCEH)
cohort study

A complete description of the CCCEH cohort and study design
appears elsewhere (Perera et al., 2006). Briefly, African–American and
Dominican women who resided in Washington Heights, Harlem, or
the South Bronx in New York City (NYC) were recruited into a prospec-
tive cohort study between 1998 and 2006 through the local prenatal
care clinics. To reduce the potential for confounding, enrollment was
restricted to women who were non-active cigarette smokers in the
age range of 18–35 years; non-users of other tobacco products or illicit
drugs; free of diabetes, hypertension, or known HIV; and had initiated
prenatal care by the 20th week of pregnancy. The Institutional Review
Board of the New York Presbyterian Medical Center approved the
study. The mothers provided informed consent for themselves and
their children and children provided assent at age 7.

2.2. Personal interviews, home caretaking environment, and maternal
intelligence

2.2.1. Prenatal interview
A 45-minute questionnaire administered by a trained bilingual

interviewer during the last trimester of pregnancy elicited demographic
information, residential history, health and environmental data such as
active smoking (to confirm non-active smoking status as reported on
the screening questionnaire) and exposure to environmental tobacco
smoke (ETS). In the cohort, self-reported ETS exposurewas positively cor-
relatedwith cotininemeasured in cord blood (r=0.44, p-valueb 0.0001).
The questionnaire also elicited information on dietary PAH (consumption
of broiled, fried, grilled or smoked meat) and information related to
income and education.
2.2.2. Postnatal interviews and assessments
Postnatal interviews were administered in-person at 6 months and

annually thereafter to determine changes in residence, ETS exposure,
and health and environmental conditions. The PERI-D was also re-
administered at those interviews (Dohrenwend et al., 1980). At child
age 3, the quality of the proximal caretaking environment was assessed
using Caldwell and Bradley's HomeObservation forMeasurement of the
Environment (HOME) (Bradley, 1994). Maternal nonverbal intelligence
was measured at child age 3 by the Test of Non-Verbal Intelligence-
Third Edition (TONI-3) (Brown et al., 1997), a 15-minute, language-
freemeasure of general intelligence, relatively stable and free of cultural
bias.
2.3. Material hardship

Ameasure of material hardship (Mayer and Jencks, 1989), assessing
the level of unmet basic needs in the areas of food, housing, and
clothing, was obtained prenatally and at child age 6 months, and 1, 2,
3, and 5 years by asking: “In the past year has there been a time when
you: 1. couldn't afford to buy food?; 2. couldn't afford a place to stay?;
3. couldn't afford gas/electricity?; or 4. couldn't afford clothing?” Each
answer was dichotomized (yes/no). High prenatal hardship was
defined by a positive answer to at least one of the four questions at
the prenatal assessment, and recurrent hardship by a positive response
to at least one of the questions at N50% of the prenatal period and
postnatal visits.
2.4. Biomarker measurement and prenatal monitoring

At the time of delivery, umbilical cord blood and maternal blood
were collected and transported within several hours of collection to
the CCCEH Molecular Epidemiology Laboratory. The buffy coat, packed
red blood cells, and plasma were separated and stored at −70 °C.
DNA adducts of the representative PAH, benzo[a]pyrene (B[a]P), were
analyzed in extracted white blood cell DNA using a high performance
chromatography (HPLC)/fluorescence method which detects B[a]P
tetraols (Alexandrov et al., 1992; Perera et al., 2004). The adducts
were dichotomized into detectable/nondetectable (high/low) because
57% of cord blood DNA samples had levels below the limit of detection
(0.25 adducts per 10 Evans and Kantrowitz, 2002 adducts). Some
children lacked data on cord DNA adducts due to inadequate quantity
or quality of DNA (n = 145).

PAH metabolites were measured in spot urine collected at child age
5 at the Centers for Disease Control and Prevention (CDC) using
automated liquid–liquid extraction and gas chromatography/isotope
dilution high-resolution mass spectrometry, as previously described
(Li et al., 2006, 2008; Miller et al., 2010). Although a short-term bio-
marker (half-life of 6–35 h) (Jongeneelen et al., 1990), in conditions of
chronic exposure the metabolites are considered a useful measure of
exposure to PAH from all exposure sources and pathways (Li et al.,
2006, 2008). To adjust for urinary dilution of the samples, specific
gravity (SG)measurementswere obtained using a handheld refractom-
eter (PAL-10-S-P14643C0; TAGO, Bellevue,WA).Metabolite levelswere
adjusted for SG using the formula: freshweight metabolites for the
subject × (mean SG − 1) / (SG for that subject − 1) (Hauser et al.,
2004).



Table 1
Socio-demographic and exposure characteristics of subjects (n = 276)a.

Variable Mean SD Range

Cord blood PAH–DNA adducts (% detectable) 43.8
PAH metabolites at age 5 [% N median]b 47.0
Sex (% female) 53.6
Maternal ETS (% reporting smoker in the home) 33.3
WISC Full Scale 98.6 13.2 (48, 133)
WISC Verbal Comprehension 96.3 12.2 (45, 134)
WISC Processing Speed 101.1 15.2 (62, 138)
WISC Perceptual Reasoning 100.8 14.3 (63, 137)
WISC Working Memory 97.4 14.2 (54, 135)
Maternal education (% N high school education) 63.4
Ethnicity (% AA) 38.0
Maternal IQ (TONI) 20.7 8.7 (0, 43)
Prenatal hardship (% N1 hardships) 42.8
Recurrent up to 5 years (% N 1 hardship, 50% of the time) 39.9
HOME inventory 39.8 6.0 (22, 52)

a Subjects have data on cord adducts and IQ test results at age 7.
b Variable dichotomized at themedian level for the entire population (8223.41 ng/m3).

PAH-DNA cord adduct data
available (N=394)

Child WISC scores at age 7
years (N=287)

Missing child WISC scores at
age 7 years (N=107)

= Included = Excluded

Prenatal and at least one
postnatal hardship measure

available:
Sample included in final model

(N=276)

Missing prenatal and/or at
least one postnatal hardship

measure
(N= 11)

Fig. 1. Subject selection for present analysis.
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2.5. Outcomes

At child age 7 years, trained research workers administered the
Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV),
which consists of 15 subtests, 10 of which are core subtests used for
the present study. Raw scores were converted into scaled scores based
on a metric with a mean of 10 and standard deviation of 3 specific for
the child's age group as described in the WISC-IV manual. The scaled
scores were used to derive four composite scores (working memory,
perceptual reasoning, processing speed, and verbal comprehension).
These four indices were summed to derive the composite score for full
scale IQ. The average expected performance on the full scale IQ score
on the WISC-IV is 100, with a standard deviation of 15 (Wechsler,
2003).

2.6. Statistical analysis

A total of 394 children had available data on cord adducts. Of these,
276 also had available data on material hardship and WISC outcomes.
27 subjects were missing data on one or more covariates identified as
predictors of IQ in the present cohort (at p b 0.1) or as reported in the
literature. These covariates included maternal self-report of ETS expo-
sure during pregnancy, maternal education (bhigh school; Nhigh
school), ethnicity, maternal intelligence (treated as a continuous vari-
able), child sex, and quality of the early home caretaking environment
assessed at child age 3 (treated as a continuous variable).We conducted
multiple imputation for missing data on those covariates.

Adducts were treated as high/low (detectable/nondetectable).
Stratified analyses assessed the effect of high cord adducts in the differ-
ent strata of material hardship (high vs. low prenatal and recurrent vs.
non-recurrent hardship, respectively). To determine if the effects of
high cord adducts in different strata ofmaterial hardship are statistically
different or not, we tested statistical interactions, a product term
between adducts and material hardship (prenatal or recurrent), in a
linear regression model, with the terms for adducts, material hardship
and key covariates regressed on each WISC outcome. The interaction
term betas and 95% confidence intervals (CI) were then examined to
determine whether the associations between PAH and IQ within the
low and high hardship strata were statistically different.

In separate models with a smaller number of subjects (n=230), we
adjusted for postnatal PAH exposure, using the SG-adjusted level of PAH
metabolites in child urine at age 5. In a further analyses (n = 226), we
adjusted for levels of the pesticide chlorpyrifos (CPF) and lead (n =
156) in cord blood because these toxicants have been associated with
lower working memory scores in our cohort (Rauh et al., 2011). Our
analyses involved multiple comparisons; however to reduce the
possibility of making a type II error (Rothman, 1990) we did not
perform Bonferroni adjustment.

As in previous analyses (Rundle et al., 2012), to account for potential
bias due to selection and loss to follow-up, in post-hoc sensitivity
analyses, we applied the inverse probability weighting (IPW) technique
(Curtis et al., 2007; Hernan et al., 2004; Robins et al., 2000). As before
(Rundle et al., 2012), to model probability of staying in the study for
each subject, we used a logistic model that included baseline variables
for race/ethnicity, receipt of public assistance during pregnancy, high
school education, college education, reported satisfaction with living
conditions, cord adduct level, neighborhood poverty rate, Spanish
language linguistic isolation, and indicator variables for missing data
on these variables. Note that the missing data on covariates in the 27
subjects were first filled in with single imputation.

3. Results

Socio-demographic and exposure characteristics of the sample
included in the analysis are presented in Table 1. Within our fully
enrolled cohort, there were 394 women with available cord adduct
data. A consort diagram showing how we arrived at our final analyzed
sample is shown in Fig. 1. Therewere no significant differences between
the children included in the analysis and those not included due to
missing WISC outcome or cord adduct data (n = 118), except that
there was a higher percentage of African Americans in the included
group (38% vs. 26%) (Supplemental Table S1). In the sample analyzed,
the correlation between prenatal material hardship and cord adducts
was not significant (r = −0.03, p = 0.67) and high cord adducts were
not correlated with PAH metabolites at age 5 years (r = 0.04, p =
0.52) (Supplemental Table S2).

As we had previously hypothesized, stratified analyses showed that
the association between PAH–DNA adducts in cord blood and IQ
measures was significant only among the children whose mothers re-
ported high prenatal or recurrent material hardship (Table 2). Among
the group with high prenatal hardship, children who had high levels
of adducts in cord blood had a 5.81 point lower full scale IQ score, a
5.44 point lower perceptual reasoning score and a 6.67 point lower
working memory score compared to children whose cord adducts
were low (Table 2). The same significant relationships between adducts
and IQ were not observed in the low material hardship group.

Similarly, after stratifying on recurrent hardship, adducts were
significantly associated with full scale IQ, perceptual reasoning and
working memory only within the high hardship group (Table 2,
Fig. 2). Among the group with recurrent hardship, children who had



Table 2
Association between cord blood PAH–DNA adducts on IQ at age 7, stratified by prenatal and recurrent material hardship (N = 276)a.

Low prenatal material
hardship (N = 158)

High prenatal material
hardship (N = 118)

Interaction Non-recurrent material
hardship (N = 166)

Recurrent material
hardship (N = 110)

Interaction

WISC components βadducts (95% CI) βadducts (95% CI) βinteraction (95% CI) βadducts (95% CI) βadducts (95% CI) βinteraction (95% CI)
Full Scale −1.79

(−5.50, 1.93)
−5.81
(−10.35,−1.26)⁎

−4.66
(−10.43, 1.11)

−1.32
(−4.97, 2.33)

−6.63
(−11.28,−1.98)⁎

−5.59
(−11.37, 0.20)

Verbal Comprehension −1.08
(−4.29, 2.14)

−3.36
(−7.61, 0.90)

−2.39
(−7.57, 2.80)

−0.79
(−3.98, 2.40)

−4.21
(−8.51, 0.09)

−3.13
(−8.32, 2.07)

Processing Speed −3.59
(−8.21, 1.02)

−4.17
(−9.75, 1.41)

−0.97
(−8.09, 6.16)

−3.46
(−7.71, 0.79)

−4.02
(−10.13, 2.09)

−0.83
(−7.97, 6.30)

Perceptual Reasoning −1.45
(−5.86, 2.95)

−5.44
(−10.27,−0.61)⁎

−4.66
(−11.20, 1.89)

−1.29
(−5.55, 2.96)

−5.66
(−10.71,
−0.61)⁎

−4.74
(−11.32, 1.85)

Working Memory 0.57
(−3.70, 4.85)

−6.67
(−11.38,−1.95)⁎

−8.07
(−14.48,−1.66)⁎

1.24
(−3.13, 5.60)

−8.06
(−12.49,−3.63)⁎

−9.82
(−16.22,−3.42)⁎

⁎ p-value b 0.05.
a Adjusting for ETS, sex, maternal education, maternal intelligence, ethnicity, and the home caretaking environment.
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high levels of adducts in cord blood had a 6.63 point lower full scale IQ
score, a 5.66 point lower perceptual reasoning score and a 8.06 point
lower working memory score compared to children with low cord
adducts. Statistically significant interactions between both prenatal
(β = −8.07, 95% CI (−14.48, −1.66)) and recurrent (β = −9.82,
95% CI (−16.22, −3.42)) material hardship and cord adducts were
observed on working memory scores (Table 2). Regarding the overall
main effects of high cord adducts on cognitive outcomes, associations
were uniformly inverse as hypothesized and significant for full scale
IQ (β = −3.45, 95% CI (−6.35, −0.55)) and processing speed
(β = −3.72, 95% CI (−7.28, −0.17)) and borderline for perceptual
reasoning (β = −3.02, 95% CI (−6.30, 0.26)) (data not shown). We
also conducted the stratified and interaction analyses in the subset
with postnatal PAH exposure data available (n = 230) (Supplemental
Table S3). There was no difference in results before and after adjusting
for postnatal PAH exposure, and therefore we did not include this
variable in our final model.

In the subsetwith available cord plasma CPF data (n=226), CPFwas
significantly associatedwithworkingmemory scores, after adjusting for
cord adducts and stratified on prenatal and recurrent material hardship
(data not shown). When the interaction model for cord adducts and
recurrent hardship was adjusted for CPF, the interaction on working
memory remained significant (β = −10.93, 95% CI (−17.94, −3.93))
and the interaction on full scale IQ and verbal comprehension became
significant (β = −6.48, 95% CI (−12.76, −0.20) and β = −6.19, 95%
Fig. 2. Full Scale IQ and Working Memory Scores in the low and high cord PAH–DNA
adduct groups stratified by recurrent hardship (n = 276).
CI (−10.83, −1.57), respectively). The same interactions on working
memory and full scale IQ were seen when considering prenatal
hardship (β = −13.01, 95% CI (−19.97, −6.04) and β = −7.23, 95%
CI (−13.52, −0.94), respectively) (Supplemental Table S4). Cord
adduct and CPF levels were not significantly correlated (r = −0.02,
p = 0.81); neither were cord adduct and lead levels (r = −0.06, p =
0.48). Furthermore, after adjusting for prenatal lead exposure in a
smaller subsample with available data (n = 156), high cord adducts
were significantly associated with working memory scores in both the
high prenatal (β = −10.45, 95% CI (−16.87, −4.02)) and recurrent
material hardship (β = −9.46, 95% CI (−16.08, −2.83)) groups. The
corresponding interaction terms were also significant (Supplemental
Table S5).

After repeating all analyses with IPW, the direction and magnitude
of associations did not materially change, indicating that the results
are not influenced by sample selection and loss to follow-up
(Supplemental Table S6).
4. Discussion

This is the first report of an interaction between chronic socioeco-
nomic stress and prenatal exposure to PAH, represented by PAH–DNA
adducts in cord blood, on children's IQ. Cord PAH–DNA adducts are a
direct measure of the individual fetal dose of PAH integrating exposure
over the past 3–4 months (Mooney et al., 1995).

The findings are of concern because, as has been shown with lead,
even a modest decrease in IQ can impact lifetime earnings (Grosse,
2007; Grosse et al., 2002). They are also consistentwith studies showing
modification of the neurotoxic effect of lead by social class (Bellinger,
2000).

PAH are common urban pollutants and include known carcinogens
and neurotoxicants such as B[a]P. B[a]P, considered a representative
PAH, is highly correlated with the other 7 genotoxic PAH measured in
prenatal air (r=0.80–0.96, p=0.001 except for dibenz[a,h]anthracene,
r=0.53, p b 0.001) (Perera et al., 2012). Although PAH is ubiquitous in
the urban environment, low-income communities are disproportion-
ately exposed due to greater siting of heavily trafficked roadways, bus
and truck depots, power plants and industrial boilers, and the higher
prevalence of smokers in low-income households (Chuang et al.,
1999; Evans and Kantrowitz, 2002).

This report adds to the growing literature on the vulnerability of the
developing fetus and young child to the toxic effects of environmental
pollutants (Grandjean and Landrigan, 2006; Perera et al., 2004) as
well as to socioeconomic disadvantage (Laplante et al., 2008;
Sandman et al., 2012; Singer et al., 1997) (for review see Matthews
and Gallo, 2011). Additional studies have observed similar decreases
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in IQ score as measured by the WISC-IV in response to environmental
toxicants experienced prenatally and during early childhood as our
present study (Bouchard et al., 2011; Lanphear et al., 2005; Rauh et al.,
2004;Wasserman et al., 2014). Economic deprivation and related stress
early in life have been linked to behavioral problems and lower IQ
scores in children (Duncan et al., 1994). Cumulative poverty and
hardship in the first year of life were associated with negative effects
on cognitive function in childhood (Schoon et al., 2012).

The observed interaction between PAH (cord adducts) and material
hardship is consistent with other reports that adverse social conditions
can modify the neurotoxicity of environmental pollutants such as lead,
traffic-related pollutants, and ETS (Bellinger, 2000; Clougherty et al.,
2007; Dietrich et al., 1991; Rauh et al., 2004; Winneke and Kraemer,
1984) (see McEwen and Tucker, 2011 for review).

A number of prior reports in other populations have indicated adverse
neurodevelopmental effects of air pollution (Edwards et al., 2010; Perera
et al., 2009; Sramet al., 1996; Tang et al., 2014). In the presentNYC cohort,
prenatal exposure to PAH, as measured by 48-hour prenatal air monitor-
ing, was associated with delayed mental development at age 3 years
(Perera et al., 2006) and was associated with lower intelligence at age
5 years in both the NYC cohort and in a parallel Polish cohort (Edwards
et al., 2010; Perera et al., 2009). In those reports, the association with
PAH–DNA adducts was not examined.

Mechanisms underlying interactions between toxic pollutants and
psychosocial factors are not well understood. However, chronic psycho-
social stress is known to increase allostatic load that can impair individ-
ual resilience and ability to recover from toxic insults by interferingwith
normal functioning of protective toxicokinetic and toxicodynamic
processes, resulting in elevated inflammatory tone (McEwen, 1998;
McEwen and Gianaros, 2011; McEwen and Tucker, 2011). Production
of inflammatory mediators is also stimulated by physical toxicants
(Bierhaus et al., 2003; Saxon and Diaz-Sanchez, 2000). Thus the two
types of exposures could potentiate each other through common
physiological pathways such as inflammation (Bierhaus et al., 2003;
Bierhaus et al., 2006; McEwen, 2007; McEwen and Tucker, 2011).
Research on the combined effect of maternal stress during pregnancy
and prenatal air pollution in mice showed that these stressors act
synergistically to induce neuroinflammation, leading to future neurobe-
havioral disorders (Bolton et al., 2013).

With respect to the harmful effects of prenatal PAH exposure, a
number of additional pathways have been suggested including
endocrine disruption (Archibong et al., 2002; Bui et al., 1986; Takeda
et al., 2004), binding to receptors for placental growth factors resulting
in decreased exchange of oxygen and nutrients (Dejmek et al., 2000),
binding to the human Ah receptor to induce P450 enzymes
(Manchester et al., 1987), DNA damage resulting in activation of
apoptotic pathways (Meyn, 1995; Nicol et al., 1995; Wood and Youle,
1995), oxidative stress due to inhibition of the brain antioxidant scav-
enging system (Saunders et al., 2006), epigenetic alterations affecting
gene expression (Perera and Herbstman, 2011; Wilson and Jones,
1983) and/or altered expression of nuclear transcription factors that
mediate the onset of neuronal cell differentiation (Hood et al., 2000).

Ourfindings are consistentwith those fromother animal and human
studies. Although the exposure in experimental laboratory studies is
considerably higher than those in the NYC cohort, impaired memory
has been observed in animals exposed gestationally to PAH at doses
below those causing overt toxicological effects (Saunders et al., 2002;
Wormley et al., 2004). Differences in the medial temporal/memory
composite have been significantly related to children's socioeconomic
status (Farah et al., 2006).

Regarding the interpretation of our results, it is possible that PAH are
equally toxic under conditions of low and high hardship, but that low
hardship families have unmeasured resources positively affecting the
health and development of children and buffering the adverse impact
of PAH exposure (Gershoff et al., 2007). Furthermore, those individuals
who experience material hardship may also have had a poor prenatal
diet (Ashiabi and O'Neal, 2007; George et al., 2005) and exposure to
other chemical toxicants, such as lead (Brody et al., 1994; Lanphear
et al., 2005), ETS (Rauh et al., 2004) and other air pollutants
(Calderon-Garciduenas et al., 2008; Suglia et al., 2008; Wang et al.,
2009), that also may account for the lower IQ seen in the children.

In addition, it is possible that theWISC-IV scores at age 7 are captur-
ing manifestations other than child IQ. For example, Oliveras-Rentas
et al., found that among a sample of high-functioning children with
autism-spectrum disorder, scores on the WISC-IV were correlated
with adaptive behavior as measured on the Vineland instrument and
autism spectrum symptomology scores as measured on the Autism
DiagnosticObservation Schedule (ADOS). This studydid not see a signif-
icant correlation between WISC-IV scores and ADHD symptomology
(Oliveras-Rentas et al., 2012). However, an additional study investigat-
ed clusters of IQ profiles as defined by theWISC-IV and found an associ-
ation between processing speed and inattention among children
diagnosed with ADHD. They concluded that WISC-IV scores may be
helpful in predicting symptomology of children with ADHD (Thaler
et al., 2013). In particular, working memory scores on the WISC may
be affected by clinical behavior problems (Wechsler, 2003).

We acknowledge a number of additional limitations. Although we
have adjusted for the possible confounding effects of ETS, there is
always the possibility that some residual confounding remains; and
we did not have data on a measure of psychological stress. In addition,
we excluded active smokers, illicit drug users, and women with
preexisting disease, thereby limiting generalizability.

The strengths of the study include the longitudinal design and ability
to account for a number of factors other than PAH exposure that are
known to affect child neurobehavioral development via available
biomarker and questionnaire data.

There is growing recognition of the continuing need to document in-
teractions between adverse social conditions/psychosocial stressors and
environmental toxicants and to understand the mechanisms involved
for effective intervention (Hernandez, 2006; McEwen and Tucker,
2011). The present results suggest the need for amultifaceted approach
to reduce PAH exposure and alleviate material hardship in order to
protect the developing fetus and young child. The approach could
combine screeningwomen early in pregnancy to identify those needing
material support and policy interventions to reduce air pollution
exposure in urban areas, especially low-income communities.

5. Conclusion

This study provides evidence that material hardship influences the
effect of prenatal exposure to environmental PAH, measured by PAH–
DNA adducts in cord blood, on child IQ. The associations between PAH
on full scale IQ and working memory were seen mainly among the
group of childrenwhosemothers experiencedmaterial hardship during
pregnancy and in the children's early years.

PAH are widespread in urban environments worldwide, largely as a
result of fossil fuel combustion. Their concentrations can be reduced
using currently available pollution controls, greater energy efficiency,
alternative energy sources, and regulatory intervention to remove
highly polluting sources. These results add to prior data linking PAH to
cognitive and behavioral problems in children and suggest the need
for a multifaceted approach to prevention.
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